




The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, Symbolic C++, and Reduce Program [Hardcover]
Our Price 
$ 54.60


Retail Value 
$ 78.00 

You Save 
$ 23.40 (30%) 

Item Number 
167806 





Currently unavailable...





Item description for The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, Symbolic C++, and Reduce Program by WilliHans Steeb...
The study of nonlinear dynamical systems has advanced tremendously in the last 15 years, making a big impact on science and technology. This book provides all the techniques and methods used in nonlinear dynamics. The concepts and underlying mathematics are discussed in detail. The numerical and symbolic methods are implemented in C++, SymbolicC++ and Java. Objectoriented techniques are also applied. The book contains more than 100 readytorun programs. The text has also been designed for a oneyear course at both the junior and senior levels in nonlinear dynamics. The topics discussed in the book are part of elearning and distance learning courses conducted by the International School for Scientific Computing.
Promise Angels is dedicated to bringing you great books at great prices. Whether you read for entertainment, to learn, or for literacy  you will find what you want at promiseangels.com!
Item Specifications...
Studio: World Scientific Publishing Company
Pages 585
Est. Packaging Dimensions: Length: 8.5" Width: 6.2" Height: 1.5" Weight: 2.05 lbs.
Binding Hardcover
Release Date Nov 15, 1999
Publisher World Scientific Publishing Company
ISBN 9810240252 ISBN13 9789810240257

Availability 0 units.

More About WilliHans Steeb


SteebRand Afrikaans University, South Africa
Are You The Artisan or Author behind this product?
Improve our customers experience by
registering for an Artisan Biography Center Homepage.

Product Categories
Similar Products
Reviews  What do customers think about The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, Symbolic C++, and Reduce Program?
 Good overview of nonlinear dynamics Nov 15, 2005 
This book is an overview of all of the components of nonlinear dynamics. Nonlinear dynamics is a field of study that enables wellconstructed predictive modeling of systems that might be difficult to solve otherwise. Such continuous systems were first widely modeled by ordinary and differential equations, but with the passage of time there are now tools and mathematical models at our disposal that make for a much more concise model of many systems. This workbook tries to touch on all of those mathematical tools. The first six chapters of the book has to do with modeling such complex systems in general, and the rest of the book is a survey of the tools needed to perform complex modeling. The book's format is that of briefly explaining a concept in a few pages, and then presenting a computer program that demonstrates the concept just explained. The explanations are very clear and concise, there are plenty of equations shown, and the accompanying code is well commented. If you want to really drill deeply into any of the concepts then you are going to need some other books. I suggest that for further reading for the mathematically inclined that you pick up "Chaos: An Introduction to Dynamical Systems" by Kathleen Alligood. For scientists that want to see specific problems that can be solved by dynamical systems I suggest the excellent "Nonlinear Dynamics and Chaos: With Applications in Physics, Biology, Chemistry, and Engineering" by Strogatz. The only real complaint I have against this book is that there is uneven coverage of different tools. For example, the author has a great deal to say about neural networks and fuzzy logic, but has very short chapters covering discrete wavelets and cellular automata. More material would have been great, since it is hard to find good books on discrete wavelets and cellular automata in particular. Some readers may also be annoyed that much of the book are code listings of the various demonstration programs. Overall, I would highly recommend it as one of several books that anyone interested in dynamical systems should definitely own. In particular, those individuals interested in the techniques of algorithmic composition of music might find this book a good jumping off point for studying the tools and techniques that make such compositions possible.    Helpful in some sections Sep 1, 2001 
The topics covered in this book are all important from the standpoint of applications in physics, engineering, computer science, financial engineering, and computational biology. It is written for the person just getting started in these topics, and the author does a fairly good job of discussing them. Readers should not expect, and they will not get, indepth discussions on these topics, as this would swell the book to 10 times the size. They will however get preparation for moving on to more advanced and complete treatments. Nonlinear and chaotic maps are considered in chapter 1, with elementary definitions given and six different examples of maps discussed. In discussing the calculation of numerical trajectories of maps, the author deals with the problem of large initial values for the maps and how to implement these in SymbolicC++ and Java. He also shows how to write/read data to a file using C, C++, and JAVA. The exception handling capability of JAVA comes out nicely, but no performance comparison between the three languages for simulating the maps is given by the author. The language REDUCE is used to discuss the stability of the fixed points of the logistic equation, but the code would be useless to the reader who did not have REDUCE since some of the function calls are hidden from the reader. Useful programs are given for calculating the Lyapunov and autocorrelation functions. In addition, C++ programs are given for evaluating the correlation integral for the Henon map. The programs he develops in this chapter can serve as a quick benchmark for one's own programs that calculate the same quantities. In chapter 2, the author discusses methods for studying time series, including the Lyapunov and Hurst exponents. These two quantities are of enormous importance in the study of dynamical systems, financial data, and network performance. The C++ program that the author gives for calculating the Hurst exponent will not work for arbitrary time intervals. This is followed in the next chapter by a consideration of autonomous systems of ordinary differential equations. The classification of fixed points is considered, and the important concept of a homoclinic orbit. The author gives a nice JAVA program that finds the homoclinic orbit of an anharmonic differential equation using the Lie series technique. The phase portrait of the Van der Pol oscillator is calculated using the RungeKutta technique in a C++ program, along with the LotkaVolterra system from mathematical biology. Hamiltonian mechanics is discussed in chapter 4, with the important HenonHeiles model from astrophysics is discussed and JAVA programs given for studying its behavior using the Poincare section technique. Newcomers to this technique will appreciate seeing it done here explicitly. Integrability of Hamiltonian systems using the Lax representation and Floquet theory are also treated, but only at a very rudimentary level. Dissipation is included in the next chapter, and the author discusses the classification of fixed points according to their stability. Lyapunov exponents are again brought into the picture, and the phenomenon of hyperchaos is discussed. Some bifurcation theory is introduced with an example of the Hopf bifurcation. Chapter 6 studies nonlinear driven systems, with the Duffing oscillator treated, and the author gives a useful program for calculating the autocorrelation function of this system. The controlling of chaos with feedback and nonfeedback controls is the subject of the next chapter, mostly in the context of difference maps. Fractals finally get introduced in chapter 8, with iterated function systems defined but proofs of their properties omitted. The author gives programs for calculating various popular fractals, such as the dragon, Sierpinski gasket, Koch curve, the Mandelbrot set, and the Julia set. The main disappointment in this chapter is that the author does not give programs for calculating the Hausdorff dimension or capacity, quantities that are notoriously difficult to get a meaningful computational handle on. The author switches gears in the next chapter and discusses cellular automata, which have recently made a comeback, especially in research on quantum computation. The discussion is too brief however, and does not allow the reader to gain an appreciation of the properties of these important objects. Chapter 10 gives a brief overview of some techniques for solving differential equations, such as the Euler method and the Lie series technique. The latter is not commonly treated in beginning books so its inclusion here is helpful. Symplectic integration is also discussed briefly, but the author does not discuss how to check the integrators using backward integration, which is commonly used in conservative systems modeled by symplectic maps. Chapter 11, covering neural networks, is the most wellwritten in the book, and the newcomer to the field will get a fairly decent introduction to the subject. The supplied programs serve to illustrate some of the important concepts in neural networks, such as the Hopfield model, the Kohonen network, the perceptron learning algorithm, and the backpropagation algorithm. Chapter 12 is an introduction to genetic algorithms, and I find this one particularly nice also, as it does give a rudimentary introduction to what evolutionary algorithms are all about, and gives some elementary genetic programs that find the maximum of one and twodimensional maps. He also discusses simulated annealing, and gives a useful program that allows the reader to see clearly how this technique works. The last chapter covers fuzzy sets and fuzzy logic, which has also taken on importance in recent years, especially in data mining and financial engineering. The programs given to illustrate the concepts are particularly interesting from the standpoint of coding in C++, as the author uses friend functions and operating overloading in some of them. The reader gets a good overview of fuzzy reasoning and fuzzy rulebased systems.    Useful information, poor presentation Jul 18, 2000 
The information was useful & approprate to the topic. I'd rank it as an average quality refence but a very poor text book. The text is poorly written. The code is simple and easy to understand, but not very object oriented. There is not enough explanation of the code. The code is not electronically available. The treatment was very mathematical but lacking in explanation & application examples. There were plenty of deffinitions, but not enough examples.   Write your own review about The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, Symbolic C++, and Reduce Program
Ask A Question or Provide Feedback regarding The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, Symbolic C++, and Reduce Program
Add This Product Widget To Your Website
Looking to add this information to your own website? Then use our Product Widget to allow you to display product information in a frame that is 120 pixels wide by 240 pixels high.


Copy and paste the following HTML into your website and enjoy!


