Newsletter   Secure Checkout   View Cart (0 items)  
Search:    Welcome Guest! Save up to 30-40% on most items with our awesome everyday discounts!

Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability) [Hardcover]

Our Price $ 76.30  
Retail Value $ 109.00  
You Save $ 32.70  (30%)  
Item Number 228966  
Buy New $76.30
Out Of Stock!
Currently Out Of Stock
Currently unavailable...

Item description for Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability) by Peter Kloeden & Eckhard Platen...

The numerical analysis of stochastic differential equations differs significantly from that of ordinary differential equations, due to the peculiarities of stochastic calculus. The book proposes to the reader whose background knowledge is limited to undergraduate level methods for engineering and physics, and easily accessible introductions to SDE and then applications as well as the numerical methods for dealing with them. To help the reader develop an intuitive understanding and hand-on numerical skills, numerous exercises including PC-exercises are included.

Promise Angels is dedicated to bringing you great books at great prices. Whether you read for entertainment, to learn, or for literacy - you will find what you want at!

Item Specifications...

Pages   672
Est. Packaging Dimensions:   Length: 1.5" Width: 6.5" Height: 9.75"
Weight:   2.48 lbs.
Binding  Hardcover
Release Date   Nov 28, 2000
Publisher   Springer
ISBN  3540540628  
ISBN13  9783540540625  

Availability  0 units.

More About Peter Kloeden & Eckhard Platen

Register your artisan biography and upload your photo! Are You The Artisan or Author behind this product?
Improve our customers experience by registering for an Artisan Biography Center Homepage.

Product Categories

1Books > Subjects > Professional & Technical > Professional Science > Mathematics > Applied > Statistics
2Books > Subjects > Professional & Technical > Professional Science > Mathematics > Mathematical Analysis
3Books > Subjects > Professional & Technical > Professional Science > Mathematics > Number Systems
4Books > Subjects > Science > Mathematics > Applied > Probability & Statistics
5Books > Subjects > Science > Mathematics > General
6Books > Subjects > Science > Mathematics > Mathematical Analysis
7Books > Subjects > Science > Mathematics > Number Systems

Reviews - What do customers think about Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability)?

Excellent  Apr 10, 2002
This book is one of the finest written on the subject and is suitable for readers in a wide variety of fields, including mathematical finance, random dynamical systems, constructive quantum field theory, and mathematical biology. It is certainly well-suited for classroom use, and it includes computer exercises what are definitely helpful for those who need to develop actual computer code to solve the relevant equations of interest. Since it emphasizes the numerical solution of stochastic differential equations, the authors do not give the details behind the theory, but references are given for the interested reader.

As preparation for the study of SDEs, the authors detail some preliminary background on probability, statistics, and stochastic processes in Part 1 of the book. Particularly well-written is the discussion on random number generators and efficient methods for generating random numbers, such as the Box-Muller and Polar Marsaglia methods. Both discrete and continuous Markov processes are discussed, and the authors review the connection between Weiner processes (Brownian motion for the physicist reader) and white noise. The measure-theory foundations of the subject are outlined briefly for the interested reader.

Part 2 begins naturally with an overview of stochastic calculus, with the Ito calculus chosen to show how to generalize ordinary calculus to the stochastic realm. The authors motivate the subject as one in which the functional form of stochastic processes was emphasized, with Ito attempting to find out just when local properties such as the drift and diffusion coefficients can characterize the stochastic process. The Ito formula is shown to be a generalization of the chain rule of ordinary calculus to the case where stochasticity is present. The authors are also careful to distinguish between "random" differential equations and "stochastic" differential equations. The former can be solved by integrating over differentiable sample paths, but in the latter one has to face the nondifferentiability of the sample paths, and hence solutions are more difficult to obtain. The authors give many examples of SDEs that can be solved explicitly, and prove existence and uniqueness theorems for strong solutions of the SDEs. And since ordinary differential equations are usually tackled by Taylor series expansions, it is perhaps not surprising that this technique would be generalized to SDEs, which the authors do in detail in this part. They also outline the differences between the Ito and Stratonovich interpretations of stochastic integrals and SDEs.

Part 3 is definitely of great interest to those who must develop mathematical models using SDEs. The authors carefully outline the reasons where Ito versus the Stratonovich formulations are used, this being largely dependent on the degree of autocorrelation in the processes at hand. The Stratonovich SDE is recommended for cases when the white noise is used as an idealization of a (smooth) real noise process. The authors also show how to approximate Markov chain problems with diffusion processes, which are the solutions of Ito SDEs. Several very interesting examples are given of the applications of stochastic differential equations; the particular ones of direct interest to me were the ones on population dynamics, protein kinetics, and genetics; option pricing, and blood clotting dynamics/cellular energetics.

After a review of discrete time approzimations in ordinary deterministic differential equations, in part 4 the authors show to solve SDEs using this approximation. The familiar Euler approximation is considered, with a simple example having an explicit solution compared with its Euler approximate solution. They also show how to use simulations when an explicit solution is lacking. The importance notions of strong and weak convergence of the approximate solutions are discussed in detail. Strong convergence is basically a convergence in norm (absolute value), while weak convergence is taken with respect to a collection of test functions. Both of these types of convergence reduce to the ordinary deterministic sense of convergence when the random elements are removed.

The discussion of convergence in part 4 leads to a very extensive discussion of strongly convergent approximations in part 5, and weakly convergent approximations in part 6. Stochastic Taylor expansions done with respect to the strong convergence criterion are discussed, beginning with the Euler approximation. More complicated strongly convergent stochastic approximation schemes are also considered, such as the Milstein scheme, which reduces to the Euler scheme when the diffusion coefficients only depend on time. The strong Taylor schemes of all orders are treated in detail. Since Taylor approximations make evaluations of the derivatives necessary, which is computational intensive, the authors discuss strong approximation schemes that do not require this, much like the Runge-Kutta methods in the deterministic case , but the authors are careful to point out that the Runge-Kutta analogy is problematic in the stochastic case. Several of these "derivative-free" schemes are considered by the authors. The authors also consider implicit strong approximation schemes for stiff SDEs, wherein numerical instabilities are problematic. Interesting applications are given for strong approximations for SDEs, such as the Duffing-Van der Pol oscillator, which is very important system in engineering mechanics and phyics, and has been subjected to an incredible amount of research.

More detailed consideration of weak Taylor approximations is given in part 6. The Euler scheme is examined first in the weak approximation, with the higher-order schemes following. Since weak convergence is more stringent than strong convergence, it should come as no surprise that fewer terms are required to obtain convergence, as compared with strong convergence at the same order. This intuition is indeed verified in the discussion, and the authors treat both explicit and implicit weak approximations, along with extrapolation and predictor-corrector methods. And most importantly, the authors give an introduction to the Girsanov methods for variance reduction of weak approximations to Ito diffusions, along with other techniques for doing the same. Those readers involved in constructive quantum field theory will value the treatment on using weak approximations to calculate functional integrals. The approximation of Lyapunov exponents for stochastic dynamical systems is also treated, along with the approximation of invariant measures.


Write your own review about Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability)

Ask A Question or Provide Feedback regarding Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability)

Item Feedback and Product Questions
For immediate assistance call 888.395.0572 during the hours of 10am thru 8pm EST Monday thru Friday and a customer care representative will be happy to help you!

Help us continuously improve our service by reporting your feedback or questions below:

I have a question regarding this product
The information above is incorrect or conflicting
The page has misspellings or incorrect grammar
The page did not load correctly in my browser or created an error.

Email Address:
Anti Spam Question. To combat spammers we require that you answer a simple question.
What color is the sky?
Leave This Blank :
Do Not Change This Text :

Add This Product Widget To Your Website

Looking to add this information to your own website? Then use our Product Widget to allow you to display product information in a frame that is 120 pixels wide by 240 pixels high.

    Copy and paste the following HTML into your website and enjoy!

Order toll-free weekdays 10am thru 10pm EST by phone: 1-888-395-0572 (Lines are closed on holidays & weekends.)
Customer Service | My Account | Track My Orders | Return Policy | Request Free Catalog | Email Newsletter

Gift Certificates
RSS Feeds
About Us
Contact Us
Terms Of Use
Privacy Policy