Newsletter   Secure Checkout   View Cart (0 items)  
Search:    Welcome Guest! Save up to 30-40% on most items with our awesome everyday discounts!

Artificial Immune Systems: Third International Conference, ICARIS 2004, Catania, Sicily, Italy, September 13-16, 2004, Proceedings (Lecture Notes in Computer Science) [Paperback]

Our Price $ 121.26  
Retail Value $ 129.00  
You Save $ 7.74  
Item Number 232893  
Buy New $121.26
Available on the Internet only.

Item description for Artificial Immune Systems: Third International Conference, ICARIS 2004, Catania, Sicily, Italy, September 13-16, 2004, Proceedings (Lecture Notes in Computer Science) by Giuseppe Nicosia...

This book constitutes the refereed proceedings of the Third International Conference on Artificial Immune Systems, ICARIS 2004, held in Catania, Sicily, Italy, in September 2004.

The 34 revised full papers presented were carefully reviewed and selected from 58 submissions. The papers are organized in topical sections on applications of artificial immune systems; conceptual, formal, and theoretical frameworks; artificial immune systems for robotics; emerging metaphors; immunoinformatics; theoretical and experimental studies; future applications; networks; modeling; and distinguishing properties of artificial immune systems.

Promise Angels is dedicated to bringing you great books at great prices. Whether you read for entertainment, to learn, or for literacy - you will find what you want at!

Item Specifications...

Pages   444
Est. Packaging Dimensions:   Length: 9.2" Width: 6" Height: 0.9"
Weight:   1.45 lbs.
Binding  Softcover
Release Date   Nov 10, 2004
Publisher   Springer
ISBN  3540230971  
ISBN13  9783540230977  

Availability  113 units.
Availability accurate as of May 25, 2017 10:00.
Usually ships within one to two business days from La Vergne, TN.
Orders shipping to an address other than a confirmed Credit Card / Paypal Billing address may incur and additional processing delay.

More About Giuseppe Nicosia

Register your artisan biography and upload your photo! Are You The Artisan or Author behind this product?
Improve our customers experience by registering for an Artisan Biography Center Homepage.

Product Categories

1Books > Special Features > New & Used Textbooks > Computer Science & Information Systems > Database Storage & Design
2Books > Subjects > Computers & Internet > Computer Science > Artificial Intelligence > General
3Books > Subjects > Computers & Internet > Databases > General
4Books > Subjects > Computers & Internet > General
5Books > Subjects > Science > Biological Sciences > Bioinformatics

Reviews - What do customers think about Artificial Immune Systems: Third International Conference, ICARIS 2004, Catania, Sicily, Italy, September 13-16, 2004, Proceedings (Lecture Notes in Computer Science)?

Pretty good overview  Jun 5, 2003
Bio-inspired computing has taken the world by storm in the last few decades, going by the names of neural networks, genetic algorithms, evolutionary programming, and swarm intelligence. Another one has arisen has appeared in the last 15 years or so, is inspired by the biology of the immune system, and is the subject of this book. The authors of the book are aware that the approach is novel, but do a good job of presenting the field to newcomers (like myself), who want to know what it is all about and if it indeed has useful applications. They discuss their own work in the area and that of others, and extensive references are given for further reading.

After a short introduction to the subject in chapter 1, the authors move on to a description of the biological immune system in chapter 2. They stress the need for understanding the mechanisms that regulate the adaptive immune response, so as to be able to control the transformation of an immune response from an "aggressive" to a "benign" state. The authors explain the difference between the "innate" immune system and the "adaptive" immune system. As the name implies, the adaptive immune response is a kind of "learning" ability that allows the immune system to improve itself as antigens are encountered. The innate immune response though remains constant along the lifetime of the organism. A short description of the T-cells and B-cells is given, some of which can differentiate into "memory cells" that remain circulating in the body and protect against a given antigen. Particularly interesting is the role of "pattern recognition receptors" that recognize molecular patterns associated with pathogens. The clonal selection theory of the adaptive immune system, along with the somewhat controversial immune network theory.

Chapter 3 is an overview of how to to actually create an artificial immune system (AIS). The emphasize that anything deemed controversial in the biological framework need not be when viewed from a computational perspective, such as the immune network theory. Biology is used for the inspiration of the computational models, and as such they need not reflect entirely what is true in the biological case. They also emphasize that the various attempts to simulate the immune system on computers are not examples of an AIS. Also, an AIS is more than just a pattern recognition algorithm, even though it must employ this in its use. To give a framework for an AIS, the authors employ a model of immune cells and molecules called a "shape-space". In this shape space one models the affinity of the "molecules" via a metric, which the authors eventually choose to be the Hamming metric. They then give an overview of various algorithms for modeling the immune system, such as bone marrow, thymus, and immune network models, in addition to clonal selection algorithms. For those readers familiar with dynamical systems, the immune network models are very interesting, due to the use of differential equations, and also the fact that such in immune network models the immune system is performing even in the absence of external stimuli.

Chapter 4 gives a survey of artificial immune systems, such as spectra recognition for chemical reactions, infectious disease surveillance, analysis of medical data, and computational security. The latter was of particular importance to me, so I read the discussion and the references with more attention than other parts of the book. The issue with the approaches for network intrusion detection and virus detection lie mostly in the performance of the network. Agents that are cleverly designed may form a very accurate way of detecting this malicious behavior, but their deployment on a network may degrade the its performance considerably.

I did not read chapters 5 and 6 so I will omit their review.

In chapter 7, the authors discuss various case studies in artificial immune systems that shed more light on the examples of Chapter 4. The computer network security application is discussed again, and a low number of false positives is shown to follow after the artificial immune system is simulated. However, the performance of the network is not pointed out by the authors. The authors also give more details on the application of artificial immune systems to data analysis and optimization. The discussion is interesting, but it is still an open question as to whether this approach is indeed better than other ones in optimization theory, i.e. how does the immune approach compare with the "free-lunch" theorems so often quoted in optimization theory? The authors do make a brief comparison of their optimization algorithm with evolution strategies, and this is somewhat helpful to those who are familiar with the latter.

The last chapter of the book looks to future applications of artificial immune systems, and in its connection with learning paradigms in artificial intelligence. The authors are open-minded about the future of AIS but also subject it to critical analysis.

The book motivated me to investigate the use of AIS more fully, and to begin thinking about possible applications, such as 1. Event correlation in networks. 2. Network routing: Routes that are inefficient are viewed as "antigens", and the network immune system will then cure the system of these routes, meaning that it will remember them as being antigens up to some practical time scale. The routing scheme in place will not implement these routes within this time frame. 3. The TCP/IP protocol in the context of the immune network theory where reliable connections are based on the epitope/paratope recognition capability. Any emergent properties of the network overlaid with the TCP/IP protocol such as learning, memory, and self-tolerance could be studied by viewing the packet network as an immune network. 4. Network QoS, with packets marked as low priority viewed as temporary antigens. 5. Using the function optimization capabilities of AIS do calculate the effective bandwidth of ATM networks. 6. Data analysis, particularly in the construction of algorithms to distinguish chaos from noise.


Write your own review about Artificial Immune Systems: Third International Conference, ICARIS 2004, Catania, Sicily, Italy, September 13-16, 2004, Proceedings (Lecture Notes in Computer Science)

Ask A Question or Provide Feedback regarding Artificial Immune Systems: Third International Conference, ICARIS 2004, Catania, Sicily, Italy, September 13-16, 2004, Proceedings (Lecture Notes in Computer Science)

Item Feedback and Product Questions
For immediate assistance call 888.395.0572 during the hours of 10am thru 8pm EST Monday thru Friday and a customer care representative will be happy to help you!

Help us continuously improve our service by reporting your feedback or questions below:

I have a question regarding this product
The information above is incorrect or conflicting
The page has misspellings or incorrect grammar
The page did not load correctly in my browser or created an error.

Email Address:
Anti Spam Question. To combat spammers we require that you answer a simple question.
What color is the sky?
Leave This Blank :
Do Not Change This Text :

Add This Product Widget To Your Website

Looking to add this information to your own website? Then use our Product Widget to allow you to display product information in a frame that is 120 pixels wide by 240 pixels high.

    Copy and paste the following HTML into your website and enjoy!

Order toll-free weekdays 10am thru 10pm EST by phone: 1-888-395-0572 (Lines are closed on holidays & weekends.)
Customer Service | My Account | Track My Orders | Return Policy | Request Free Catalog | Email Newsletter

Gift Certificates
RSS Feeds
About Us
Contact Us
Terms Of Use
Privacy Policy