Newsletter   Secure Checkout   Shopping Cart (0 Items)  
Search:    Welcome Guest! Save up to 30-40% on most items with our awesome everyday discounts!

Membrane Computing [Hardcover]

Our Price $ 83.30  
Retail Value $ 119.00  
You Save $ 35.70  (30%)  
Item Number 229795  
Buy New $83.30
Out Of Stock!
Currently Out Of Stock
Currently unavailable...

Item description for Membrane Computing by Gheorghe Paun...

Like quantum computing or DNA computing, membrane computing is an unconventional model of computation associated with a new computing paradigm. The field of membrane computing was initiated in 1998 by the author of this book; it is a branch of natural computing inspired by the structure and functioning of the living cell and devises distributed parallel computing models in the form of membrane systems, also called P systems.
This book is the first monograph surveying the new field in a systematic and coherent way. It presents the central notions and results: the main classes of P systems, the main results about their computational power and efficiency, a complete bibliography, and a series of open problems and research topics. Thus, the book is indispensible reading for anybody interested in molecular computing.

Promise Angels is dedicated to bringing you great books at great prices. Whether you read for entertainment, to learn, or for literacy - you will find what you want at!

Item Specifications...

Pages   430
Est. Packaging Dimensions:   Length: 9.3" Width: 6.3" Height: 1.1"
Weight:   1.45 lbs.
Binding  Hardcover
Release Date   Sep 17, 2002
Publisher   Springer
ISBN  3540436014  
ISBN13  9783540436010  

Availability  0 units.

More About Gheorghe Paun

Register your artisan biography and upload your photo! Paun from the Romanian Academy

Gheorghe Paun was born in 1950.

Are You The Artisan or Author behind this product?
Improve our customers experience by registering for an Artisan Biography Center Homepage.

Product Categories

1Books > Calendars > Arts
2Books > Special Features > New & Used Textbooks > Computer Science & Information Systems > Artificial Intelligence
3Books > Subjects > Computers & Internet > Computer Science > Artificial Intelligence > Computer Mathematics
4Books > Subjects > Computers & Internet > Computer Science > Artificial Intelligence > General
5Books > Subjects > Computers & Internet > Computer Science > Artificial Intelligence > Theory of Computing
6Books > Subjects > Computers & Internet > General
7Books > Subjects > Computers & Internet > Hardware > Mainframes
8Books > Subjects > Professional & Technical > Engineering > Mechanical > Robotics

Reviews - What do customers think about Membrane Computing?

An extremely detailed overview   Oct 14, 2005
Beginning with neural networks almost half a century ago, bio-inspired computing has come a long way. This progress has been mostly in theoretical developments, but recently there has been an upsurge in practical applications, due mainly to the increase in computing power. This book gives an overview of a very interesting twist on bio-inspired computing, namely that of constructing a computational grammar based on the chemical and metabolic processes in a living cell. This approach is intriguing on the surface, but it remains to be seen whether it will result in useful algorithms for solving practical problems. A list of open research problems is given in the book for the reader interested in pushing forward the frontiers of the subject.

The author's approach is to justify membrane computing in the context of computational grammar, i.e. is it powerful enough to be modeled as a language in the Chomsky hierarchy or the hierarchy of Lindenmayer systems? He does show that it is, but he also wants to justify the view of membrane computing as being one in the paradigm of parallel computing, which strictly speaking is outside the realm of these hierarchies. The author reviews the relevant computability theory in chapter two of the book, with the content being fairly standard. The exception to this is the discussion of `regulated rewriting' and the notion of a `matrix grammar' with `appearance checking.'

Abstracting from the geometry of the living cell, a membrane structure consists of several membranes that are arranged in a hierarchical structure and are contained in a main membrane, called the skin. Membranes surround `regions,' and an `elementary' membrane is one that does not contain any other membranes. The regions contain `multisets' of `objects', these being abstractions of chemicals present in the compartments of a biological cell. The objects are represented by symbols from an alphabet chosen a priori, and they evolve according to given evolution rules. These rules are associated to the regions and are applied non-deterministically and in parallel, i.e. all objects that can evolve must do so. The objects can be moved between regions and the membranes can be dissolved, created, and divided. These processes thus result in the membrane system making a transition from one configuration to another, with all the transitions collectively constituting a `computation.' A `halting computation' results when the rules are exhausted, i.e. there is no rule that can be applied to an existing objects. The result of a halting computation is the number of objects in a specified output membrane.

A `symbol-object membrane system' or `P-system' is thus a construct consisting of an alphabet O of objects, a membrane structure consisting of a finite number M of membranes (M is called the `degree'), a collection of M strings representing multisets over O associating with the M regions, a collection of M evolution rules over O, and a designation of a membrane as being the output membrane. An evolution rule has the form U -> V, where U is a string over O and V is a string over the `target.' The length of U is called the `radius' and if the radius is greater than one the P-system is called a system `with cooperation' (otherwise `non-cooperative'). In analogy with chemical reactions, certain types of cooperative systems are called `catalytic' systems.

Early on in the book, the author shows that as defined, these P-systems are not powerful enough from the standpoint of generative grammars. This motivates extensions to the basic definition, such as the ability to dissolve membranes, the use of prioritization among the evolution rules, the removal of synchronization, controlling the permeability of membranes, controlling the concentration between regions, creating rules during the computation, and using promoters or inhibitors. For each of these extensions, the author proves (in extreme detail) various results on how they improve the computational power of ordinary P-systems in relation to the Chomsky and Lindenmayer hierarchies.

The author also narrows his discussion to membrane systems that are more faithful to their biological inspiration. One of these discussions involves computations that arise from merely changing the locations of the objects with respect to the membranes of a system, instead of changing the objects themselves. This entails bringing in objects from the environment, and the intake and outtake of objects through membranes. Systems that do this the author calls `symport/antiport' and he proves that such systems are `computationally universal' in the sense that they generate the family of length sets of recursively enumerable languages.

Not all of the book's content is devoted to theoretical developments, for the last chapter is devoted to discussions on how to use the computational models to actually build a model of the living cell. To do this one must take cognizance of the energy requirements of the cell, which has been neglected in the computational models in the rest of the book. His discussion here is interesting for he makes use of the concept of a `conformon', which, as the name implies, is essentially a local conformational strain of a biomolecule that is genetically determined and responsible for specific biological functions. The conformon concept has found some legitimacy from a physics standpoint recently (viewed as "packets" or "solitons" of conformational energy), but in this book the author is more concerned with using it as a device for computational grammar. In particular, he views a conformon as a pair consisting of a name and a number, the latter of which is the energy associated with the name information.

For this reviewer, the most interesting part of the book is the discussion on the simulation of photosynthesis. The membrane system consists of an external membrane representing the envelope membrane of the chloroplast, and the internal membrane representing the thylakoid membrane. It is a fascinating project to turn this analysis around and construct a real system consisting of vegetative matter that is powered by light and capable of running real algorithms with useful output.

First of its kind on Membrane Computing!!!  May 9, 2003
A innovative book that introduces the concepts of membrane computing, an alternative way of computation that mimics the structure and functioning of living cells. This is a new branch of computing, and though the concepts are well developed by Prof Paun (whom I have the honor of meeting in person), much work still remains to be done to bring the concepts into practical applications. Should make an interesting area of applied R&D.

Write your own review about Membrane Computing

Ask A Question or Provide Feedback regarding Membrane Computing

Item Feedback and Product Questions
For immediate assistance call 888.395.0572 during the hours of 10am thru 8pm EST Monday thru Friday and a customer care representative will be happy to help you!

Help us continuously improve our service by reporting your feedback or questions below:

I have a question regarding this product
The information above is incorrect or conflicting
The page has misspellings or incorrect grammar
The page did not load correctly in my browser or created an error.

Email Address:
Anti Spam Question. To combat spammers we require that you answer a simple question.
What color is the sky?
Leave This Blank :
Do Not Change This Text :

Add This Product Widget To Your Website

Looking to add this information to your own website? Then use our Product Widget to allow you to display product information in a frame that is 120 pixels wide by 240 pixels high.

    Copy and paste the following HTML into your website and enjoy!

Order toll-free weekdays 10am thru 10pm EST by phone: 1-888-395-0572 (Lines are closed on holidays & weekends.)
Customer Service | My Account | Track My Orders | Return Policy | Request Free Catalog | Email Newsletter

Gift Certificates
RSS Feeds
About Us
Contact Us
Terms Of Use
Privacy Policy