Newsletter   Secure Checkout   Shopping Cart (0 Items)  
Search:    Welcome Guest! Save up to 30-40% on most items with our awesome everyday discounts!

Quantum Mechanics: Symmetries [Paperback]

Our Price $ 90.30  
Retail Value $ 129.00  
You Save $ 38.70  (30%)  
Item Number 228401  
Buy New $90.30
Out Of Stock!
Currently Out Of Stock
Currently unavailable...

Item description for Quantum Mechanics: Symmetries by D.A. Bromley Walter Greiner...

Quantum Mechanics (Symmetries) deals with a particularly appealing and successful concept in advanced quantum mechanics. After a brief introduction to symmetries in classical mechanics, the text turns to their relevance in quantum mechanics, the consequences of rotation symmetry, and the general theory of Lie groups. The isospin group, hypercharge, SU(3) and their applications are all dealt with in depth before chapters on charm, SU(4), and dynamical symmetries lead to the frontiers of research in particle physics. This unique text comprises more than 120 detailed, worked examples and problems.
As the third reprint of the second edition, this book has been revised to bring the text up to date.

Promise Angels is dedicated to bringing you great books at great prices. Whether you read for entertainment, to learn, or for literacy - you will find what you want at!

Item Specifications...

Pages   526
Est. Packaging Dimensions:   Length: 9.45" Width: 7.32" Height: 1.42"
Weight:   2.12 lbs.
Binding  Softcover
Release Date   Mar 2, 2004
Publisher   Springer
ISBN  3540580808  
ISBN13  9783540580805  

Availability  0 units.

More About D.A. Bromley Walter Greiner

Register your artisan biography and upload your photo! Are You The Artisan or Author behind this product?
Improve our customers experience by registering for an Artisan Biography Center Homepage.

Product Categories

1Books > Special Features > New & Used Textbooks > Sciences > Physics
2Books > Subjects > Professional & Technical > Professional Science > Physics > General
3Books > Subjects > Professional & Technical > Professional Science > Physics > Quantum Theory
4Books > Subjects > Science > General
5Books > Subjects > Science > Physics > General
6Books > Subjects > Science > Physics > Quantum Theory

Reviews - What do customers think about Quantum Mechanics: Symmetries?

FIRST read a book in Lie groups  Aug 14, 2003
Book: Quantum Mechanics - Symmetries, 2nd edition, 15 chapters, 496 pages

Scope of the book: applications of group theory in elementary particle physic (no field theory!)

Reader: PhD student in physics, I am a beginner in that area, this is my first book in symmetries and Lie groups.

My evaluation:
The math sections in the book give u some basic notion of Lie groups but are NOT sufficient to fully understand the logic behind the scene everywhere. My advice is to read some good book in Lie groups in advance.
The strongest feature of the book is its richnes of examples and solved exercises both in group theory and in its application to particle physics. You can learn a lot of analytical 'tricks' from the solutions.
At the same time the text is full of small errors (signs, indeces, equation numbers, misprints). They are easy to detect and fun to debug and keep you concentrated while debugging.
My main objection is that very often the logic in the text remains hidden, broken or fuzzy. Sometimes they prove some statement but at the end you can't tell what was actually proven or under what conditions that proof is valid, what facts it is derived from, does it rely on implicit assumptions or it's generaly true. As a consequence of that you are not sure if you can apply the statement for a situation that is not exactly the one discussed in the book. Sometimes it's hard to tell if they are talking about a necessary of sufficient condition or both. Or they, having something in mind that you don't know about, make some sudden assumption and you wonder why. Some concepts are not defined sharply from the begining but instead the authors use fussy definitions and define them much later (example: tensor product of multiplets and its reduction is defined understandably in chapter 10 but is used all the time before that). The explanations of the algebra in the examples and exercises is also not the best since in many cases I see a more logical, organized and understandable way to explain it to the reader. Also in some cases the book gives just the algebra without giving the reader the more fundamental cause for some fact(example: in exercise 8.3 page 255 they have two matrices connected by a similarity transformation, they prove with some algebra that the eigenvalues remain the same but don't tell you that's always the case with similarity transformations).

To my opinion the authors have to a lot of work to do to make the logic fully explicit and understandable to the reader everywhere in the text. Without that, the book can be regarded as a nice collection of solved examples and exercises in group theory and particle physics.

I give that book 3 out of 5 stars and hope that the other volumes of the sequence don't have that flaw.

Contents of the book:

chap1: symmetries in classical physics, Noether's theorem, symmetries in quantum mechanics and their generators: momentum, angular momentum, energy and spin operators

chap2: angular momentum algebra; irreducible representations of SO(3); addition of angular momenta; Clebsh-Gordon coefficients

chap3: Lie groups, generators, Lie algebra; Casimir operators and Racah theorem; multiplets;

chap4: enumeration of the multiplets through eigenvalues of Casimir operators; energy degeneracy within a multiplet; two or more commuting symmety groups

chap5: neutron, proton doublet; isospin SU(2) symmetry; pion triplet; adjoint representation of Lie algebra

chap6: charge Q; hypercharge Y; baryons, antibaryons, baryon resonances; T3-Y diagrams;

chap7: U(n) and SU(n) groups; generators, Lie algebra of SU(3); subalgebras of SU(3) and shift operators; dimensions of SU(3) multiplets D(p,q);

chap8: smallest non-trivial representations of SU(3), quarks; meson multiplets; tensor product of multiplets and their reduction; Gell-Mann-Okubo mass formula; quark models with spin added, SU(6); wave functions construction, proton, neutron, baryon decuplet, baryon octet; mass formula in SU(6);

chap9: permutation group Sn, identical particles; Young diagrams; dimensions of irreducible Sn representations; connection to SU(n) multiplets; dimensions of SU(n); decompositions of SU(n) multiplet into SU(n-1) multiplets; decomposition of tensor product of multiplets with Young diagrams;

chap10: group characters; schur first and second lemma; orthogonality relations of characters of discrete finite groups; reduction of reducible representations; continuous, compact groups, group integration; integration over unitary groups; group characters of U(n); quark-gluon plasma example;

chap11: charm, SU(4), group generators; smallest non-trivial representations of SU(4), [4] and [4bar]; decomposition of tensor products of SU(4) multiplets; OZI rule for suppressing reactions; meson and baryon multiplets, SU(3) content; potential model of charmonium;SU(4)[with spin SU(8)] mass formula;

chap12: weight operators, standard Cartan-Weyl basis of a semi-simple Lie algebra; root vectors; graphic representations of root vectors and Lie algebras; simple roots and Dynkin diagrams;

chap13: space reflection (parity); time reversal; antilinear operators, complex conjugate operator K, antiunitary operator; general form of time reversal operator in coordinate representation for particle with spin;

chap14: classical hygrogen atom constants of motion: energy, angular momentum, Runge-Lenz vector; corresponding quantum constants of motion (operators), their algebra and group SO(4)- dynamical symmetry; decoupling of the SO(4) algebra into two SO(3) algebras and determination of the energy eigenvalues (Pauli method i guess); classical and quantum isotropic oscillator;

chap15: compact and noncompact Lie groups; group SU(p,q); group SO(p,q); generators of SO(2,1), infinitesimal operators, Casimir operators; non-compactness of SO(2,1) and its infinite dimensional irreducible unitary representations; application of SO(2,1) representations to scattering problems;


Write your own review about Quantum Mechanics: Symmetries

Ask A Question or Provide Feedback regarding Quantum Mechanics: Symmetries

Item Feedback and Product Questions
For immediate assistance call 888.395.0572 during the hours of 10am thru 8pm EST Monday thru Friday and a customer care representative will be happy to help you!

Help us continuously improve our service by reporting your feedback or questions below:

I have a question regarding this product
The information above is incorrect or conflicting
The page has misspellings or incorrect grammar
The page did not load correctly in my browser or created an error.

Email Address:
Anti Spam Question. To combat spammers we require that you answer a simple question.
What color is the sky?
Leave This Blank :
Do Not Change This Text :

Add This Product Widget To Your Website

Looking to add this information to your own website? Then use our Product Widget to allow you to display product information in a frame that is 120 pixels wide by 240 pixels high.

    Copy and paste the following HTML into your website and enjoy!

Order toll-free weekdays 10am thru 10pm EST by phone: 1-888-395-0572 (Lines are closed on holidays & weekends.)
Customer Service | My Account | Track My Orders | Return Policy | Request Free Catalog | Email Newsletter

Gift Certificates
RSS Feeds
About Us
Contact Us
Terms Of Use
Privacy Policy